
KVM

OSS Technology Section II
OSS Platform Technology Center
Business Strategy Group
SCSK

2012-05

Linux

● a UNIX-like kernel

– Process,Thread

– Signal,TTY

– Pipe

– BSD Socket,TCP/IP

– Filesystem

– ...

qemu

● “FAST! processor emulator” by Fabrice Bellard

● An ordinary process from the host OS's POV

● Dynamic translator

● Emulate many of misc peripherals

– PCI, ISA, ...

– IDE, NIC, ...

– Keyboard, Mouse

– Video

– ...

x86

● Intel i386 and compatible processors

● AMD introduced 64-bit mode

– “amd64”,”x86-64”,“long mode”

– Intel followed; “IA32e”,”Intel64”

● Virtualization unfriendly

– CPUID

● Recent virtualization support featues

– Intel VMX

– AMD SVM

KVM

● Modified version of qemu (“qemu-kvm”),
accelerated by “kvm” kernel module

● “kvm” kernel module requires hardware
virtualization features provided processors

– eg. Intel's virtual-machine extension “VMX”

KVM

● qemu options

--enable-kvm

--no-kvm

qemu-kvm process

qemu-kvm VCPU model

● Spawns threads for each VCPUs

VMX nonroot

VMX root

Ring 3

I/O thread VCPU 1 thread VCPU 2 thread

qemu-kvm memory model

● Use some parts of qemu-kvm process' virtual
memory as its guest's physical memory

qemu-kvm
address space

guest
physical address space

VMX

● Extensions for VMM implementations

● Special instructions

– VMXON, VMLAUNCH, VMREAD, ...

● Virtual-machine control data structures
(“VMCS”)

● VMX non-root operation

– “Guest mode”

● VMX root operation

– “Host mode”

VMCS

● Per logical processer (VCPU) structure

● Maintain VCPU state

– Guest-State

● Guest registers

● non-register state (eg. “Blocking by STI”)

– Host-State

● Host processor state used for VM Exit

– VM-Exit Information

● Why VM exit happened?
– Interrupt, Page fault, ...

– etc

VM Enter, VM Exit

● VM Enter; Transition from “VMX root” to “VMX
non-root”

● VM Exit; Transition from “VMX non-root” to
“VMX root”

● Expensive and should be avoided for better
performance

VM Exit reasons

● Interrupts

● Page faults

● Instructions

– I/O

● inb, outb, ...

– HLT

– CPUID

– ...

● ...

Who emulates what?

● Depends on versions and configurations, but...

● VMX emulates performance critical stuffs

– Most of CPU instructions

● Including the infamous “CPUID”

● kvm kernel module emulates some of the rest

– PTE walker (“shadow paging”)

– “HLT” instruction

– APIC

● qemu-kvm (userland) handles the rest

– Many of devices, including disks

thread

Ordinary threads

thread

kernel
(Ring 0)

userland
(Ring 3)

trap ret

kernel
(Ring 0)

userland
(Ring 3)

trap ret

switch

thread

qemu-kvm VCPU thread

thread

kernel
(Ring 0, VMX root)

userland
(Ring 3)

trap ret

guest
(VMX non-root)

kernel
(Ring 0, VMX root)

userland
(Ring 3)

trap

VM Enter VM Exit

ret

switch

qemu-kvm
VCPU threadordinary thread

thread

qemu-kvm VCPU thread

guest (VMX non-root)

kernel (Ring 0, VMX root)

kernel userland

kvm kernel module

VM ExitVM Enter

userland
(Ring 3)

trap ret

qemu-kvm

switch

VMCS

thread

VMX emulated stuff

guest (VMX non-root)

kernel (Ring 0, VMX root)

kernel userland

kvm

userland
(Ring 3)

qemu-kvm

VMCS

thread

kvm emulated stuff

guest (VMX non-root)

kernel (Ring 0, VMX root)

kernel userland

kvm

VM ExitVM Enter

userland
(Ring 3)

qemu-kvm

switch

VMCS

thread

qemu emulated stuff

guest (VMX non-root)

kernel (Ring 0, VMX root)

kernel userland

kvm

VM ExitVM Enter

userland
(Ring 3)

qemu-kvm

switch

VMCS

trap ret

Features of recent processors

● EPT (Extended Page Table)

– Nested paging

– PTE walk w/o VM Exit

● VPID (Virtual Processor Identifier)

– 16-bit tag for TLBs and caches

● VT-d

● PAUSE-Loop Exit

– Detect busy loop in guest

● TPR shadow

Address translation

● Software uses virtual address (VA)

● Physical memory is located by by physical
address (PA)

● The translation is often cached (TLB)
VA PA

Translation

x86 page table

● Processor-defined in-core structure

● Radix tree

● Describe VA -> PA mapping

CR3

Where is VA=1213?

1

2

1
3 here!

KVM address spaces

● 4 different address spaces

– guest virtual address (gva)

● used by guest software

– guest physical address (gpa)

– host virtual address (hva)

● qemu-kvm process' address space

– host physical address (hpa)

Address translation

gva gpa
guest

page table

hva hpahost
page table

KVM
memsection

Address translation

● gva -> gpa

– Need to walk page table in guest

– Complicated because guest page table itself uses
gpa

● gpa -> hva

– KVM maintains the mapping (memory slots)

● hva -> hpa

– Same as normal processes

Shadow page table

● Software technique to emulate guest page table

● Host software walks guest page table and build
the corresponding “shadow” page table

● CPU actually walks the “shadow” one

● Complicated

Address translation (shadow)

gva gpa
guest

page table

hva hpahost
page table

KVM
memory slots

shadow
page table

EPT

● gpa -> hpa translation table

– In-core tree-ish structure similar to page table

● CPU automatically traverses guest page table
and EPT w/o software intervention

● Top level pointer (EPTP) is stored in VMCS

● A new instruction to invalidate translation

– INVEPT

EPT

● Processor-defined in-core structure

● Radix tree

● Describe gpa -> hpa mapping

EPTP

Where is gpa=1213?

1

2

1
3 here!

Address translation (EPT)

gva gpa
guest

page table

hva hpahost
page table

KVM
memory slots

EPT

Address translation (Xen, FV)

gva gpa
guest

page table

hva hpaLinear
mapping

p2m / EPT
(shared)

Example: COW (native)

– memory write -> fault

– kernel: update page table

– memory write -> OK!

Example: COW (w/o EPT)

– guest: memory write -> fault

– VM Exit

– host: inspect guest page table and inject page fault

– VM Enter

– guest kernel: update page table

– guest: memory write -> fault

– VM Exit

– host: inspect guest page table and update shadow

– VM Enter

– guest: memory write -> OK!

Example: COW (w/ EPT)

– guest: memory write -> fault

– guest kernel: update page table

– guest: memory write -> OK!

Q: how many memory fetches can
be necessary for a translation?

● Hint

– Native

● CR3

● 4 level page directories

– EPT

● Guest CR3

● 4 level guest page directories

● All of the above are gpa-based
– Need EPT walk for gpa->hpa

– 4 level EPT directories

EPT switching

● Allows a guest switch EPT

– Select from listed EPTPs

● What to use?

EPT

● kvm_intel module option

ept=1

VPID

● Additional 16-bit tag for TLB entries

● Stored in VMCS

● A new instruction to invalidate translations

– INVVPID

VPID PCID VA PA

VPID

● kvm_intel module option

vpid=1

VT-d

● DMA remapping

● Interrupt remapping

● Allows device pass-through

DMAR

DMA/Interrupt remap hardware unit

● At least one for a PCI segment

● Described by ACPI “DMAR”

DMA-remapping hardware

Interrupt Remapping Table

Interrupt-remapping hardware

Root Entry Table

w/o DMA remapping

Guest EPT

memory

Devicehpagpa hpahpa

w/ DMA remapping

Guest EPT

memory

DeviceIOMMUhpagpa gpahpa

Direct program
with gpa

EPT-compatible
page table

DMA remapping (IOMMU)

● Bus/Device/Function -> Address space

– 2 level tree

● Root-entry table
– Indexed by Bus#

● Context-entry table
– Indexed by Device# and Function#

– Contains

● Domain ID
● Address space root

● DMA Virtual Address (dva) -> hpa

– EPT-like multi-level page table

Interrupt remapping

I/OxAPIC

Interrupt remapping hardware

Legacy
Interrupt

MSI
MSI-X

FEEX_XXXX
(bit4 == 1)

Interrupt remapping

● New interrupt request format

– Compatibility format (OLD)

● Address contains Destination ID

● Data contains Vector

– Remappable format (NEW)

● Address contains HANDLE

● Data contains SUBHANDLE

● Interrupt Remapping Table (IRT)

– Indexed by HANDLE+SUBHANDLE

– Entry (IRTE) contains Destination ID, Vector, ...

Interrupt request format

DESTFEE 0 VEC

HANDLEFEE 1 SUBHANDLE

Address Data

IRT Index

IRTE

DEST VECSVT/SQ/SID

Souce Validation

VT-d

● kernel boot parameters

iommu=

intel_iommu=

intremap=

● qemu

“device assignment”

PAUSE Loop-Exit

● PAUSE instruction is used to “yield” processor
resources to sibling threads (Hyper Threading,
SMT)

● Detect tight loop with PAUSE and causes VM
Exit to notify host OS

– Avoid wasting processor cycles

thread

Lock contention in a guest OS

thread

host

VCPU 2VCPU 1

guest

VM Enter VM Exit

host

guest

VM Enter VM Exit

LOCK

thread

VCPU 1 acquires the lock

thread

host

VCPU 2VCPU 1

guest

VM Enter VM Exit

host

guest

VM Enter VM Exit

LOCK

thread

... but preempted by the host OS

thread

host

VCPU 2VCPU 1

guest

VM Enter

host

guest

VM Enter VM Exit

LOCK

owner:
VCPU 1

Switch to
other thread

VM Exit

thread

Now, VCPU 2 wants the lock

thread

host

VCPU 2VCPU 1

guest

VM Enter

host

guest

VM Enter VM Exit

LOCK

owner:
VCPU 1

VM Exit

SPIN WAIT !!!

thread

w/ PAUSE-Loop Exit

thread

host

VCPU 2VCPU 1

guest

VM Enter

host

guest

VM Enter VM Exit

LOCK

owner:
VCPU 1

VM Exit

Detect Spin LoopDetect Spin Loop

Switch to
other thread

HvNotifyLongSpinWait

● HYPER-V hypercall API

● Explicit scheduler hint from virtualization-aware
guest OS

● cf. “Hypervisor Top Level Functional
Specification v1.0.docx”

● KVM handles this in the same way as PAUSE-
Loop Exit

PAUSE Loop-Exit

● kvm_intel module options

ple_window=

ple_gap=

TPR

● Task Priority Register

● Resides in Local APIC

● Controls interrupt acceptance

– Larger value blocks more interrupts

● Many ways to access

– Local APIC

– RDMSR/WRMSR

– MOV CR8

TPR

● Some OSes updates TPR very frequently

– Windows

● A workaround: disable ACPI

● Others don't use TPR at all

– Linux

– NetBSD

TPR shadow

● Redirect TPR traffic to virtual APIC memory w/o
VM Exit

● VM Exit only if TPR value drops below the
threshold in VMCS

● aka FlexPriority

TPR shadow

● kvm_intel module option

flexpriority=1

PV devices, PV drivers

● Emulation of “real” devices is complex, and
often inefficient

● Virtual devices for virtualization-aware guests

– virtio

● net

● blk

– PV clock

– balloon

– PV ticket lock

– ...

virtio

● “Virtio PCI Card Specification v0.9.4 DRAFT”

● Virtual PCI devices for virtual environments

– Vendor ID 1AF4 Qumranet

– Device ID 1000 - 103F

– Subsystem Vendor ID

● 1 Network card

● 2 Block device

● ...

● Not specific to KVM

virtio-net

Ring buffer
TX

VCPU
qemu i/o

OR
vhost

tap

Ring buffer
RX

eventfd
Interrupt

eventfd

outb sendmsg

recvmsg

virtio

● qemu options

-device virtio-net-pci,.....

-device virtio-blk-pci,.....

-device virtio-balloon-pci,.....

PV Clock

● Before VM Enter, host writes:

– TSC at last update (tsc_timestamp)

– ns since boot (system_timestamp)

– TSC rate (tsc_to_system_mul, tsc_shift)

● Guest reads the above and calculates:

– system_timestamp +

– (((rdtsc() - tsc_timestamp) * tsc_to_system_mul)

– >> tsc_shift)

Ballooning

● Thin-provisioning, Overcommit

● Reduce the amount of guest memory w/o
requiring the guest OS to support memory hot
removal

Guest physical pages

pages allocated
by balloon driver hypervisor

Inflate

Deflate

virtio balloon

● Balloon operations are translated to madvise on
qemu-kvm process space

– Inflate -> madvise(MADV_DONTNEED)

● NOTE: on Linux, DONTNEED discards data

– Deflate -> madvise(MADV_WILLNEED)

virtio balloon

● qemu options

-device virtio-balloon-pci,.....

● qemu monitor commands

balloon

info balloon

Ticket locks

● A lock consists of 2 counters

– TAIL

– HEAD

Ticket locks

● Initialize

– TAIL = HEAD = 0

● Acquire

– LOCAL_COPY_OF_TAIL = TAIL

● “ticket”

– TAIL += 1

– Wait until HEAD == LOCAL_COPY_OF_TAIL

● Release

– HEAD += 1

Ticket locks

● FIFO behaviour is desirable for fairness

● But horrible worst-case performance for
virtualized environment

– Hypervisor doesn't know the FIFO order

● Disabled for KVM guests

PV ticket locks

● Used for Xen

– KVM version is still under development

● HALT instead of spin

● Upon unlock, issue an explicit hypercall to wake
up waiters

PV ticket locks

● Acquire

– LOCAL_COPY_OF_TAIL = TAIL

● “ticket”

– TAIL += 1

– HALT until HEAD == LOCAL_COPY_OF_TAIL

● Release

– HEAD += 1

– Hypercall to unHALT waiters

Async PF (problem)

● Guest memory can be swapped out in host OS

● Access to the memory makes VCPU block

● During swap-in, the VCPU can't do anything
useful

Async PF (FV guest)

● Perform swap-in in a separate worker thread in
host OS and make VCPU block as if it “HLT”

– KVM_REQ_APF_HALT

● A halted VCPU can serve virtual interrupts

– Thus, if lucky enough, can switch to another guest
thread, which might be able to run without the
swapped-out memory

Async PF (PV guest)

● If supported by a guest

– MSR_KVM_ASYNC_PF_EN

● Explicitly notify guest

– Per-VCPU mailbox; apf_reason

● KVM_PV_REASON_PAGE_NOT_PRESENT

● KVM_PV_REASON_PAGE_READY

– Exception #14 (page fault)

● Allows PV-aware-guest block and unblock its
threads

Guest OS PV support
このイメージは、現在表示できません。

Misc Linux features used by KVM

● vhostnet

● eventfd

● Linux native AIO (libaio)

● signalfd

vhostnet

● Move virtio queue handling from userland
(qemu) to kernel thread (vhost)

● Improve perfomance, mainly latencies

vhostnet

● qemu options

-netdev,vhost=on

eventfd

● int eventfd(unsigned int initval, int flags)

● pollable

write

write

read

0

1

2

0
2

1

1

libaio

● Kernel-supported AIO

● API different from POSIX AIO

signalfd

● int signalfd(int fd, const sigset_t *mask, int
flags);

● receive signals via a descriptor

● pollable

kill

read

SIGUSR2

siginfo-like

SIGUSR2

thread

Example: entering guest

guest (VMX non-root)

kernel (Ring 0, VMX root)

kernel userland

kvm

VM ExitVM Enter

userland
(Ring 3)

qemu-kvm

switch
trap ret

IOCTL

VMLAUNCH

VMRESUME

thread

Example: guest system call

guest (VMX non-root)

kernel (Ring 0, VMX root)

kernel userland

kvm

VM ExitVM Enter

userland
(Ring 3)

qemu-kvm

switch
trap ret

thread

Example: guest I/O (qemu)

guest (VMX non-root)

kernel (Ring 0, VMX root)

kernel userland

kvm

VM ExitVM Enter

userland
(Ring 3)

qemu-kvm

switch
trap ret

OUTB

IOCTL IOCTL return

thread

Example: guest I/O (vhost)

guest (VMX non-root)

kernel (Ring 0, VMX root)

kernel userland

kvm

VM ExitVM Enter

userland
(Ring 3)

qemu-kvm

switch
trap ret

OUTB

thread

Example: real interrupt

guest (VMX non-root)

kernel (Ring 0, VMX root)

kernel userland

kvm

VM ExitVM Enter

userland
(Ring 3)

qemu-kvm

switch
trap ret

Interrupt handler
(Ring 0, VMX root)

thread

Example: guest interrupt

guest (VMX non-root)

kernel (Ring 0, VMX root)

kernel userland

kvm

VM ExitVM Enter

userland
(Ring 3)

qemu-kvm

switch
trap ret

Inject

IOCTL

thread

Example: guest DMA

guest (VMX non-root)

kernel (Ring 0, VMX root)

kernel userland

kvm

VM ExitVM Enter

userland
(Ring 3)

qemu-kvm

switch
trap ret

memcpy

Live migration

● Move a VM to another host over a network link

Host 1 Host 2

VM

TCP

Live migration

● Naive way

– Stop VM

– Transfer VM

● device state

● transfer memory <- EXPENSIVE!

– Start VM

Live migration

● pre-copy (current qemu-kvm implementation)

– Transfer VM (1)

● enable dirty page tracking

● transfer clean memory

– Stop VM

– Transfer VM (2)

● device state

● transfer dirty memory <- expected to be small

– Start VM

Dirty page tracking

● Detect and report modification of guest pages

– Trap modifications by removing write access from
shadow page table entries or EPT

– Record the modified pages in a bitmap

– IOCTL to query and clear the bitmap

● Used for

– Live migration

– Emulation of frame buffer devices

Live migration

● post-copy

– Stop VM

– Transfer VM (1)

● device state

– Start VM

– Transfer VM (2)

● background / on-demand transfer of memory

Live migration (disk)

● Disk is even more expensive to transfer than
memory

● Common techniques

– Share a disk among hosts

● iSCSI, SAN, NFS, ...

– Keep disks in-sync

● NBD, ...

– Copy disk on migration

● qemu block migration (migrate -b)

Live migration w/ block migration

– Transfer VM (1)

● enable dirty page tracking

● enable dirty disk block tracking
– in-core dirty bitmap similar to memory

● transfer clean memory

● transfer clean disk blocks

– Stop VM

– Transfer VM (2)

● device state

● transfer dirty memory <- expected to be small

● transfer dirty disk blocks <- expected to be small

– Start VM

